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Abstract--In a system composed of a ductile matrix with a particle included in it, the deformation of the matrix, 
the displacement field, and the rotation and the deformation of the block are related to the viscosity ratio between 
block and matrix and also to the degree of bonding between the matrix and the block. In this paper,  belemnites 
from the Lower Lias of the Alps provide a natural example of moderately deformed objects included in a slaty 
matrix. They are compared with analogue models made of paraffin, in which a long block of a more competent 
paraffin is included. 

Depending on the degree of bonding between matrix and object, the same block appears to be deformable or 
quite rigid. With a high degree of bonding, the strain refraction observed corresponds to the viscosity ratio 
between the block and the matrix. When the degree of bonding is weak, the block is quite undeformed, its 
rotation is great and the deviation of the strain in the matrix is analogous to that observed around a fault. The 
kinematic conditions appear to have a greater effect on the finite strain than the viscosity ratio of the materials. 

INTRODUCTION 

RIGID particles included in a more ductile matrix have 
been used as kinematic indicators of natural strain in 
rocks for a long time. The motion of ellipsoidal particles 
immersed in a viscous fluid is described by Jeffery's 
(1922) equations. According to these equations, it 
appears that the motion of the particles is a function of 
their shape (Cox 1970, Freeman 1985). 

Where contact is mechanically weak, the matrix is 
detached from the object and pressure shadows can 
develop. The relative particle motion can then be 
recorded by the growth of fibres (Choukroune 1971, 
Malavieille et al. 1982, Ramsay & Huber 1983, Etcheco- 
par & Malavieiile 1987). This motion could also be a 
function of the degree of bonding between the ductile 
matrix and the object. 

A high degree of bonding, on the other hand, often 
leads to the deformation of the object. Particles that 
deform homogeneously with the matrix can be used as 
strain markers. Initially spherical objects provide strain 
ellipsoids directly (Cloos 1947). For initially non- 
spherical objects, the strain ellipsoids are determined by 
different techniques using lines or angles measured on 
the deformed objects (Ramsay & Huber 1983). 

In a great number of examples, the particles around 
which pressure shadows develop are not deformed or 
only slightly so, whereas particles without pressure sha- 
dows are deformed along with the matrix. In the first 
case, the competence contrast between the object and 
the matrix is thought to be important; in the second, the 
behaviour is related to the viscosity ratio between the 
object and the matrix (Ramsay 1982). Detachment and 
sliding along the interface could be responsible for a 

great part of this distinction between deformation and 
non-deformation of the object. 

The purpose of this paper is to explore how the 
kinematic behaviour of an interface influences the effec- 
tive competence contrast that is observed between an 
object and its matrix. Moreover, this leads to the ques- 
tion, can a competence contrast always be expressed by 
a rheological contrast or a viscosity ratio? 

In the first part of the paper, deformed belemnites in a 
slaty matrix provide a natural example in which the 
competence contrast between deformed fossils and their 
slaty matrix is moderate. In the second part, an analogue 
model is used to consider how two parameters: (1) the 
viscosity ratio between the object and the matrix; and (2) 
the kinematic behaviour of the interface, affect the 
deformation of a matrix and inclusions within it. 

Many analogue models show the displacement of a 
rigid or competent body in a ductile matrix and the 
deformation pattern of the matrix in simple shear (Cox 
1971, Bilby & Kolbuszewski 1977, Van den Driessche & 
Brun 1987), in pure shear (Gay 1968a, StrOmgard 1973) 
or in a combination of pure and simple shear (Ghosh & 
Ramberg 1976). None of these papers, however, tries to 
compare the results of two similar models, one where 
the object is detached from the matrix and one where it is 
not. Here is an attempt to look at the question of how the 
interface affects the nature of the finite strain pattern. 

COMPETENCE CONTRAST AROUND 
DEFORMED BELEMNITES 

Usually, the objects around which pressure shadows 
develop are weakly deformed of undeformed, as around 
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pyrite crystals, for example. In such cases the viscosity 
ratio between the object and the matrix can be con- 
sidered as high. 

When there are no pressure shadows, the deformation 
of the matrix cannot be accommodated by displacement 
along the interface. As a result, the object can deform. 
Deformed belemnites are well-known strain markers of 
the Lower Lias sequence of the Alps. Most of the 
belemnites, being more competent than the matrix, 
deform heterogeneously by extension across fractures of 
their skeleton (Badoux 1963, Beach 1979). From 
measurement of stretched belemnites, the finite strain 
ellipse can be constructed in the plane of the slaty 
cleavage, that is the X Y  plane (Ramsay 1967, Hossain 
1979, Ferguson 1981, 1987, Ferguson & Lloyd 1984). 

Belemnites lying at a high angle to cleavage also show 
internal strain (Fig. la). The curvature of the cleavage 
around the tips of the belemnites is proof that the matrix 
is more ductile than the belemnite during the defor- 
mation. Nevertheless, the belemnites are truly de- 
formed. This is clear when comparing the length to 
width ratio of the belemnite in Fig. l(a) with the initial 
ratio of an undeformed belemnite reconstructed from a 
boudinaged fossil. This ratio is close to 10 for the 
undeformed fossil, whereas it is about 5 for the belem- 
nite in Fig. l(a). Pressure solution can be observed in 
some belemnites (Gratier & Vialon 1980) where the 
stress concentration induces a dissolution of the fossil 
itself (Fig. lb). 

Using an analogue model, Ghosh & Sengupta (1973) 
showed that when the value of the viscosity ratio be- 
tween the object and the matrix is more than 15, the 
object does not deform. Thus, according to Ghosh & 
Sengupta (1973), the viscosity ratio between the belem- 
nite and matrix in Fig. l(a) should be between 1 (for an 
object deformed homogeneously with the matrix) and 15 
(for an undeformed object). It is difficult to be more 
precise, however, because the belemnite has not de- 
formed homogeneously. The two tips curve, and there is 
no cleavage refraction across the belemnite, from which 
viscosity ratio could be estimated (Treagus 1988). In 
order to continue the analysis, analogue models have 
been used. In these models the value of the viscosity 
ratio was fixed between 1 and 15 and, to investigate the 
action of the degree of bonding of the interface, the 
object was attached to the matrix in some experiments 
and not attached in others. 

ANALOGUE MODELS 

Slaty cleavage is formed by, and belemnites deformed 
by, pressure solution, and viscous flow is the rheological 
behaviour associated with this mechanism (Rutter 1976, 
Gratier 1987). So, two types of paraffin wax, which is a 
viscous material (Cobbold 1975, Mancktelow 1988), 
have been chosen to represent the matrix and the objects 
in these experiments. In each experiment an elongate 
inclusion was embedded in a thick layer of paraffin 

representing the matrix. The model was then deformed 
by uniaxial shortening. 

The analogue materials 

The matrix was made of paraffin wax, manufactured 
by MERCK, with a melting point of 46-48°C. At the 
temperature of the experiments (30°C) a natural log-log 
plot of strain rate against stress shows a non-linear 
viscosity with a stress exponent of 1.8 (Fig. 2). For the 
same paraffin, but at lower temperatures, Mancktelow 
(1988) reported an exponent of 2.6. At a temperature of 
30°C the material is believed to approach the a-fl phase 
transition, where weakening occurs. 

A stiffer paraffin wax was used to represent a more 
competent object included in the ductile matrix. This is a 
mixture of two paraffin waxes with different melting 
points (46-48 and 52-54°C) in the proportion of three 
parts of the first to one part of the second. At a tempera- 
ture of 30°C, the stress exponent of this mixture is 3.2. 
As pressure solution leads to a linear flow law (Rutter 
1976), a linear viscous material should ideally have been 
used in these experiments. However, as this work is 
mainly focused on the ratio of dynamic viscosities, 
paraffin wax has been used because it is very easy to 
obtain a mixture of a special viscosity by mixing two 
different waxes. 

During the experiments, the bulk strain rate was 1.8 × 
10 -4 s -I and the temperature was 30°C. Imposed on 
both materials, this strain rate should lead to a dynamic 
viscosity ratio of about 2 between the mixed paraffin and 
the 46--48°C paraffin. 

In some experiments, silicone grease was introduced 
between the matrix and the object, to lubricate the 
interface. This is a non-linear viscous material with a 
stress exponent of 1.9. The dynamic viscosity ratio 
between the matrix and the grease is about 600. This is 
quite enough to create a non-coherent interface around 
the object. 

The experiments 

The matrix was made of a large layer of 46--48°C 
paraffin (70 x 45 x 1.1 cm). A strip of the matrix, 30 x 5 
cm in dimensions, was cut out and replaced by an in- 
clusion of mixed paraffin. Elongate inclusions are com- 
parable to belemnites and other semi-rigid inclusions 
observed in nature. These inclusions were oriented at 
high angles to a potential cleavage, close to the compres- 
sion direction. Before deformation, this angle, between 
the long side of the inclusion and the compression 
direction, was 30 ° in most of the experiments. 

The model was placed horizontally on a layer of 
silicone grease in a rectangular box (70 x 60 cm) made of 
Piexiglass. It was deformed by moving one of the walls of 
the box (Fig. 3). The displacement of the wall was halted 
every 5 cm, then the model was cooled and the strain on 
the surface of the model was measured from small circles 
drawn before deformation. The complete displacement 
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Fig. I. (a) Thin-section of deformed belemnites from the road to Oulles near Bourg d'Oisans (French Alps). The 
belemnites lying at a high angle to cleavage are shortened, but they arc more competent than the matrix. This is shown by 
the curvature of the cleavage. (b) A high degree of solution at the tips of some belemnites is proof that pressure solution 
occurs during deformation. (c) Analogue model made of a competent block of paraffin wax included in more ductile matrix 
(model I); a coherent interface of melted paraffin wax joins the matrix and the object. (d) Analogue model in which the 
interface is not coherent (model 2). The paraffins of the block and the matrix arc the same as in the model illustrated in (c). 

999  





Kinematics of deformable inclusions and their matrix 1001 

S-1 

10 -1 

10-2 

10 -3 

10 -4 ," 

D 
10- 5 

102 

0 

• 0 [ ]  

g 
n 
[ ]  

I 

P a  
I I 

10 3 104 

Fig. 2. Natural log-log plot of strain rate (s -1) against stress (Pa) of 
the 46-48°C paraffin wax (black squares) and mixed paraffin wax 
(white squares) at a temperature of 30°C. Stress exponents are 1.8 for 

the 46-48°C paraffin and 3.2 for the mixed paraffin. 

of the wall was 20 cm. This corresponds to a finite bulk 
shortening of 28.5 %. 

The two complete experiments described in this paper 
differ only in the nature of the interface. In one experi- 
ment (model 1) the matrix and the inclusion were stuck 
together by melted paraffin (Fig. lc). In the other 
(model 2), some grease was introduced at the interface 
between the matrix and the inclusion to allow sliding 
(Fig. ld). Complementary experiments with rigid or 
short inclusions are described at the end of this paper. 
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Fig. 3. Map of the finite strain ellipses of model 1 at stage 3 of 
deformation. The short axes of the ellipses are represented by solid 
line segments; the long axes are shown with dotted lines if the 
extension along them exceeds 4%. In this model the competent  block 
of mixed paraffin is stuck to the matrix of 46--48°C paraffin. The block 
is deformed. A strain refraction can be seen in the model where the 
finite strain directions deviate in a counterclockwise direction in the 

matrix and in a clockwise direction in the block. 
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Fig. 4. Comparison of strains at equal distances from the moving wall 
in model 1, to eliminate strain heterogeneity associated with the wall 
and friction on the base plate. Horizontal shortening of more than 10% 
greater than the mean is represented by large concentric hexagons. 
Values of shortening less than 10% less than the mean do not occur. 

Two small areas of excess shortening appear at the block tips. 

The deformation of the matrix 

A deformation map can be drawn at each stage of the 
experiment. Figure 3 shows this map at stage 3, after the 
wall displacement reached 15 cm. If we assume that 
during deformation the volume of paraffin does not 
change, the change in area of each ellipse is balanced by 
the vertical thickening of the layer. In the first experi- 
ment (model 1), the deformation is not homogeneous. 
This agrees with the results of Gay (1968b) who demon- 
strated that a viscous material containing competent 
objects did not strain homogeneously. Along the long 
sides of the object, a deviation of the principal axes of 
strain is observed: this is in a counterclockwise direction 
in the matrix and in a clockwise direction within the 
object. 

Because a unilateral compression acted on the model, 
the strain is greater close to the moving wall. For a better 
understanding of the heterogeneous strain introduced 
by the object, we have to eliminate the influence of the 
moving wall. Ellipses equidistant from the moving wall 
are compared. A mean value of the length of the short 
axes of finite strain ellipses in each group is calculated, 
then each ellipse compared with the mean of its group. If 
the shortening differs by more than 10% from the mean, 
the size of the small hexagon that represents each ellipse 
in Fig. 4 is changed.Two large concentric hexagons are 
drawn if the shortening is greater than the mean, and a 
large dotted hexagon if the shortening is less than the 
mean (Fig. 4). The heterogeneity introduced in the 
deformation of the matrix in model 1 is minimal, only 
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Fig. 5. Map of the finite strain ellipses of model 2 at stage 3 of the 
deformation. The materials are the same as in model 1, and the 
interface is non-coherent.  The block is quite undeformed and defor- 
mation is very heterogeneous in the matrix. Along one side of the 
block, the deviation of strain is in a clockwise direction at one tip, while 

it is counterclockwise at the other tip, as along a fault. 

Fig. 6. Comparison of strains at equal distances from the moving wall 
in model 2. Horizontal shortening of more than 10% greater than the 
mean is represented by large concentric hexagons, and horizontal 
shortening of less than 10% less than the mean is represented by dotted 
hexagons. Shortening appears to be concentrated at the tips of the 
object where the matrix is displaced to after sliding along the interface. 

the ellipses located at the corners of the block are 
unusually deformed. 

In model 2 the matrix was detached from the object, 
silicone grease on the interface preventing the matrix 
and the object from sticking together. The deformation 
map is drawn at stage 3 of the experiment (Fig. 5). The 
strain is very heterogeneous and is not, unlike in the 
previous experiment, a result of strain refraction only. 
The deviation of the strain ellipses along one side of the 
block is not homogeneous: it is observed to be in a 
clockwise direction at one tip of the block, whereas it is 
counterclockwise at the other tip. This deviation of the 
principal directions of strain is the same as that observed 
around large faults (Anderson 1951, Chinnery 1963) or 
small fractures (Segall & Pollard 1980, Gamond 1983). 

The heterogeneity of strain is shown in Fig. 6, where 
the lengths of the short axes are compared. Here, the 
more shortened ellipses are not located between the 
object and the compressing wall, as in model 1 (Fig. 4), 
but at the tips of the object where the matrix is displaced 
after sliding along the object. This organization of the 
compressed areas is the same as along a fault (Odonne 
1990). 

The deformation of the blocks 

In both analogue models, the blocks are deformed, 
but not in exactly the same way (Fig. 1). In model 1, the 
block is less deformed than the matrix and a strain 
refraction can be observed all along the object (Fig. 3). 

Treagus (1981) has shown that, between two adjacent 
layers, a strain refraction is related to a viscosity con- 
trast. The strain pattern that can be observed around an 
elongate object appears to be similar to that produced by 
a layer embedded in a viscous matrix. It can be seen that 
this strain refraction is produced by a very small viscosity 
contrast; in this experiment the viscosity ratio between 
the matrix and the object is about 2. 

In model 2, where the matrix is detached from the 
object, the deviation of the strain inside the block 
appears to be unorganized. In fact, the strain ellipses 
within the object are almost undeformed (Fig. ld). At 
stage 3 of the experiment, the mean value of the short 
axes of these finite strain ellipses (1 + e2) is 0.93, while it 
is 0.85 in the block of model 1. The scattering of the 
orientations reflects more the difficulty in measuring 
than the organization of the deformation. Because dy- 
namic viscosity is a relation between stress and strain 
rate, it is difficult to be sure of the viscosity ratio in this 
second experiment in which the stresses are not com- 
pletely transmitted in the block when a sliding occurs on 
the interface. 

An important result of these experiments is that two 
inclusions made of the same material appear to be either 
deformed or quite undeformed according to the degree 
of bonding at the interface. The block is quite unde- 
formed if displacement is possible along the interface, 
and deformed if displacement is impossible. Str6mgard 
(1973) has already emphasized a similar difference in the 
deformation of boudins according to the degree of 
cohesion across the contacts between the boudins and 
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Fig. 7. Displacement vectors relative to the centre of the block of 
model 1. They show a displacement field analogous to that of a pure 
shear. Rotation of the block during the experiment is not large and is 
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Fig. 8. Displacement vectors relative to the centre of the block of 
model 2. They exhibit a left-lateral displacement along the interface 
and rotation of the block in a clockwise direction. A very small 

shortening is recorded by the block during the experiment. 

the matrix. During folding, a similar influence is known: 
analogue experiments show that the rate of fold propa- 
gation may be influenced by the degree of bonding 
between layer and matrix (Abbassi & Mancktelow 
1990). 

Displacement field and rotation of the blocks 

The displacement vector fields drawn between the 
undeformed state and stage 3 of each experiment show 
two types of displacement field. In model 1, the displace- 
ment vectors relative to the centre of the model show a 
N-S shortening and an E-W stretching (Fig. 7). This 
displacement field is similar to that of a pure shear 
deformation (Ramsay & Huber 1983), but it is not a pure 
shear because of the non-plane strain conditions of these 
experiments. In model 2, the displacement field is more 
complex (Fig. 8). The shortening direction is still N-S 
but the stretching direction is not exactly E-W. Left- 
lateral displacement along the block introduces a non- 
coaxial strain history, the result of which is a significant 
rotation of the block. 

Under unilateral compression, the blocks rotate 
toward the direction of the flattening plane, as they do in 
pure shear (Gay 1968a). This rotation is greater in model 
2 where the object is detached from its matrix (Fig. 9). 
Rotation is 20 ° at the end of the experiment in this 
model, while it is only 11 ° in model 1. 

In model 2, the block rotates easily, allowing it to 
escape from the compression direction, and this block is 
less deformed than that in model 1. In model 2, how- 
ever, the deformation of the matrix is very different 
from the deformation of the object. The rotation of the 

block appears to be a means of accommodating the 
heterogeneous strain in the model. 

Some further data provided by experiments with rigid 
objects 

Several experiments have also been done with square, 
rigid or segmented blocks. The most interesting results 
are supplied by models with rigid blocks. In these 
experiments a block made of 52-54°C paraffin, which is 
still rigid at 30°C, was substituted for the block made of 
mixed paraffin from the previous experiments. In three 
experiments with rigid blocks with a coherent interface, 
differing only in the shape of the block, there are 
deviations in the finite strain directions along the sides of 
the blocks. The shape of the block, square (Fig. 10), 
rectangular (Fig. 11) or elongate (Fig. 12) does not seem 
to influence the amount of deviation, unlike the strain 
concentration, which is greatest at the tips of the 
elongate block and noticeably less around the square 
and rectangular blocks. Of course, the rotation of the 
block is dependent on its shape. During the deformation 
(28.5% finite bulk shortening), the rotation of the 
elongate block is 8°; it is 6 ° for the rectangular block and 
zero for the square block. 

Lastly, an experiment with an elongate rigid block 
detached from its matrix has been carried out (Fig. 13). 
The rotation of the block is very easy, being 14 ° at the 
end of the experiment. The deviation of the principal 
directions of the strain ellipses along the block is the 
same as around a fault or around a non-rigid block 
detached from its matrix (Fig. 5). 
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Fig. 9. Rotation and strain of the blocks in (a) model 1 and (b) model 2. The successive positions of each block are 
superimposed on the positions at the end of deformation. (a) When there is a high degree of bonding between block and 
matrix, the block is shortened and does not rotate much. (b) When the interface is non-coherent, rotation is large while 

deformation of the block is small. 
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Fig. 10. Map of the finite strain ellipses of a model with a rigid square 
block at stage 3 of deformation. In this model, the block is made of 52- 
54°C paraffin and is separated from the matrix (made of 46-48°C 
paraffin) by a coherent interface. The deformation pattern in the 

matrix is not very heterogeneous. 

DISCUSSION 

Borradaile (1981) showed that cleavage planes def- 
lected around a rigid object give a measurement of 
strain. However,  this technique provides only first- 
order-of-accuracy of strain intensity and generally gives 
a minimum value. As demonstrated by Cobbold & 
Barbotin (1988), the curvature of a strain trajectory does 
not always imply an increase in strain intensity. In the 
experiments that are presented here, the curvature of 
the flattening plane around competent bodies does not 
correspond systematically to the point of highest strain. 
In Fig. 6, the ellipses that are most shortened (indicated 
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Fig. 11. Map of the finite strain ellipses of a model with a rigid 
rectangular block at stage 3 of deformation. The materials are the 
same as in the experiment illustrated in Fig. 10. The interface is 
coherent, In the matrix, the finite strain directions deviate in counter- 
clockwise and clockwise directions along the long and short sides of the 

block, respectively. 

by concentric hexagons) are not located in the areas of 
highest curvature of the flattening plane (Fig. 5). 

Another result from these experiments is that, in two 
experiments with the same bulk shortening, the curva- 
ture of the flattening planes differs according to the 
degree of bonding between matrix and object. Where 
displacement at the interface is large, the curvature is 
considerable (Fig. 5), but where the interface is coher- 
ent, the curvature is slight (Fig. 3). This emphasizes the 
importance of interface behaviour. 

Only when the interface is coherent is strain refraction 
related to the viscosity ratio (Treagus 1981, 1983, Cob- 
bold 1983, Treagus & Sokoutis.1992). It has been 
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demonstrated theoretically (Treagus 1981) that com- 
petent layers exhibit relatively low strain and strain axes 
lie approximately orthogonal to layering with a non- 
coaxial strain history (Treagus 1988). This is why, in the 
block of model 1 ,  the strain axes deviate from the 
shortening direction and are parallel to the long axis of 
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Fig. 12. Map of the finite strain ellipses of a model with a rigid 
elongate block at stage 3 of deformation. In this model, the interface is 
coherent. The deformation in the matrix is concentrated around the 
tips of the block. The deviation of the finite strain directions is 

analogous to that of the rectangular block (Fig. 11). 
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Fig.  13. Map of the finite strain ellipses of a model with a rigid 
elongate block at stage 3 of deformation. This experiment is the same 
as  t h e  o n e  illustrated in Fig. 12, but with a non-coherent interface. The 
deformation pattern in the matrix is the same as for model 2 (non- 
coherent interface around a deformable block). Compare this figure 

w i t h  Fig .  5.  

the block (Fig. 3). When the contact is mechanically 
weak, on the other hand, as in model 2, the matrix is 
detached from the object and the displacement field is 
more complex than in model 1. In natural examples, 
pressure shadows record these displacements (Passchier 
& Simpson 1986, Etchecopar & Malavieille 1987, Bell e t  
al .  1989). The analogue model also shows that an im- 
portant consequence of the detachment is that whatever 
the characteristics of the block, it appears rigid during 
deformation when the degree of bonding between 
matrix and object is weak. In this case, as the stresses are 
not completely transmitted into the block, it is difficult 
to be sure of the viscosity ratio. 

To conclude, these analogue models show that kine- 
matic conditions appear to have a greater action on the 
finite strain pattern than the viscosity ratio or the shape 
of the different parts of the structure. If an easy displace- 
ment is possible in the material, the deformation is 
organized around the kinematic discontinuity. The 
heterogeneous strain due to different materials with 
ductility contrasts depends primarily on the kinematic 
conditions. 
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